第4章 数据的概括性度量

内容提要

4.1 集中趋势的度量

4.2 离散程度的度量

4.3 分布形状的度量

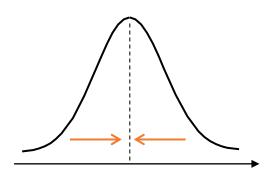
数据的3个分布特征

集中趋势

数据向其中心值靠拢或 聚集的程度

度量

众数、中位数和四分位数、 平均数

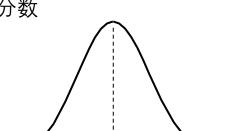


离散趋势

数据远离其中心值的趋势

度量

异众比率、四分位数差、方 差和标准差、离散系数、标 准分数

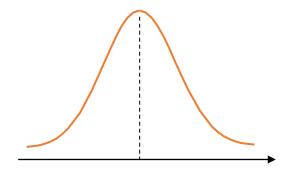


分布形状

数据分布的峰态与偏态

度量

偏度、峰度、J-B统计量



问题:上述3个特征描述的是哪种分布?为什么不是其他分布?

4.1 集中趋势 的度量

众数

中位数和四分位数

平均数

众数

定义

众数(Mode)是一组数据中出现频数最多的数值。

表示: M_o

适合: 无序分类数据

优点: 不受极端值影响

说明

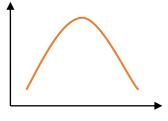
- 数据量较多时使用
- 一组数据可能没有众数,或者出现多个众数
- 也可用于有序分类和数值型数据

无众数

10 5 9 12 6 8

一个众数

6 5 9 8 5 5



多个众数

25 28 28 36 42 42

例子: 无序分类数据的众数

不同品牌饮料的频数分布

饮料类型	频数	比例	百分比(%)
果汁 矿泉水 绿茶 其他 碳酸饮料	6 10 11 8 15	0.12 0.20 0.22 0.16 0.30	12 20 22 16 30
合计	50	1	100

这里的变量为"饮料类型", 属于**无序分类变量**,不同类 型的饮料就是变量值

所调查的50人中,购买碳酸饮料的人数最多,为15人,占总被调查人数的30%,因此饮料类型的众数为"碳酸饮料",即

 $M_o = 碳酸饮料$

例子: 有序分类数据的众数

某城市家庭对住房状况的评价

回答类别	户数 (户)	百分比 (%)
非常不满意 不满意	24 108	8 36
一般	93	31
满意	45	15
非常满意	30	10
合计	300	100.0

这里的数据为**有序分类数** 据,变量为"回答类别"

该城市中对住房表示不满意的户数最多,为 108户,因此众数为"不满意"这一类别,即

 $M_0 = 不满意$

中位数

定义

中位数(Median)是一组数据排序后处于中间位置的数值。

50%	50%
N	∕l _e

表示: M_e

适合: 有序分类数据

优点: 不受极端值影响

说明

- 常用于收入分配的研究
- 也可用于数值型数据

位置确定

中位数位置 =
$$\frac{n+1}{2}$$

数值确定

$$M_e = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & n 为奇数 \\ \frac{1}{2} \left\{ x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right\} & n 为偶数 \end{cases}$$

例子: 有序分类数据的中位数

某城市家庭对住房状况的评价

回答类别	户数 (户)	累计频数
非常不满意	24	24
不满意	108	132
一般	93	225
满意	45	270
非常满意	30	300
合计	300	-

中位数的位置为

(300+1)/2 = 150.5

从累计频数看,中位 数在"一般"这一组别中

中位数为

$$M_{\rm e}$$
=一般

例子: 数值型数据的中位数

例1: 9个家庭的人均月收入数据

原始数据

1500 750 780 1080 850 960 2000 1250 1630

排序与位置

750 780 850 960 **1080** 1250 1500 1630 2000

1 2 3 4 **5** 6 7 8 9

中位数位置 =
$$\frac{n+1}{2}$$
 = $\frac{9+1}{2}$ = 5

$$M_{\rm e} = 1080$$

例2: 10个家庭的人均月收入数据

原始数据

660 780 750 1080 850 960 2000 1250 1630 1500

排序与位置

660 750 780 850 **960 1080** 1250 1500 1630 2000

1 2 3 4 **5 6** 7 8 9 10

中位数位置 =
$$\frac{n+1}{2}$$
 = $\frac{10+1}{2}$ = 5.5

$$M_{\rm e} = \frac{960 + 1080}{2} = 1020$$

四分位数

定义

四分位数(Quartile)是指一组数据排序 后处于25%和75%位置的数值。

25%		25%	25%	, b	25%
Min	Q_L	Ì	M_e	Q_U	Мах

表示

- 下四分位数: Q_L 或 $Q_{25\%}$
- 上四分位数: *Q*₁₁或 *Q*_{75%}

适合: 有序分类数据

优点: 不受极端值影响

位置确定
• 通常
$$Q_{L} \oplus \mathbb{E} = \frac{n}{4}$$

$$Q_{U} \oplus \mathbb{E} = \frac{3n}{4}$$

数值确定: 依据位置,比例分摊

例子: 有序分类数据的四分位数

某城市家庭对住房状况的评价

回答类别	户数 (户)	累计频数
非常不满意 不满意 一般 满意 非常满意	24 108 93 45 30	24 132 225 270 300
合计	300	-

Q 位置=(300)/4=75

 $Q_{\rm U}$ 位置 =(3×300)/4=225

从累计频数看, Q_L 在"不满意"这

一组别中; Q_U 在"一般"这一组别中

四分位数为

$$Q_{\rm L}$$
 = 不满意

$$Q_{IJ} =$$
一般

例子: 数值型数据的四分位数

例1: 9个家庭的人均月收入数据

位置	1	2	3	4	5	6	7	8	9
排序后	750	780	850	960	1080	1250	1500	1630	2000
原始数据	1500	750	780	1080	850	960	2000	1250	1630

$$Q_{\rm L}$$
位置 = $\frac{9}{4}$ = 2.25 $Q_{\rm U}$ 位置 = $\frac{3 \times 9}{4}$ = 6.75

$$Q_{\rm L} = 780 + (850 - 780) \times \mathbf{0.25}$$
 $Q_{\rm U} = 1250 + (1500 - 1250) \times \mathbf{0.75}$ $= 1437.5$

定义

平均数(Mean),也称均值、算数平均数,它是一组数据相加后除以数据个数得到的数值。

重要性

集中趋势最常用的测度值

分类

- 简单平均数、加权平均数
- 总体平均数(μ)、样本平均数(\overline{x})

适合:数值型数据

缺点: 容易受极端值影响

简单平均数 vs 加权平均数

简单平均数

某**未分组数据**为: x_1 , x_2 , ..., x_n (总体数据 x_N)

• 样本平均数

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

总体平均数

$$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$$

加权平均数

某分组数据

各组的组中值为: M_1 , M_2 , ..., M_k

各组的频数为: f_1 , f_2 , ..., f_k

样本加权平均

$$\bar{x} = \frac{M_1 f_1 + M_2 f_2 + \dots + M_k f_k}{f_1 + f_2 + \dots + f_k} = \frac{\sum_{i=1}^k M_i f_i}{n}$$

• 总体加权平均

$$\mu = \frac{M_1 f_1 + M_2 f_2 + \dots + M_k f_k}{f_1 + f_2 + \dots + f_k} = \frac{\sum_{i=1}^k M_i f_i}{N}$$

例子: 加权平均数

某电脑公司销售量数据分组表

按销售量分组	组中值(<i>M_i</i>)	频数(f _i)	$M_i f_i$		
140~150	145	4	580		
150~160	155	9	1395		
160~170	165	16	2640		
170~180	175	27	4725		
180~190	185	20	3700		
190~200	195	17	3315		
200~210	205	10	2050		
210~220	215	8	1720		
220~230	225	4	900		
230~240	235	5	1175		
合计	_	120	22200		

$$\bar{x} = \frac{\sum_{i=1}^{k} M_i f_i}{n}$$
$$= \frac{22200}{120} = 185$$

几何平均数

定义

几何平均数(Geometric mean),是指n个变量值乘积的n次方根。

表示: G_m

公式:
$$G_m = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n} = \sqrt[n]{\prod_{i=1}^n x_i}$$

适合: 比率数据的平均

说明

- 常用于平均增长率的计算
- 特殊类型的算术平均数

$$\ln G_m = \frac{1}{n} (\ln x_1 + \dots + \ln x_n) = \frac{\sum_{i=1}^n \ln x_i}{n}$$

几何平均数 vs 算术平均数

例子: 一位投资者购持有一种股票, 连续4年收益率分别为4.5%、2.1%、25.5%、1.9% 计算: 该投资者在这四年内的平均收益率

几何平均数

$$\bar{G} = \sqrt[4]{104.5\% \times 102.1\% \times 125.5\% \times 101.9\%} - 1$$
= 8.0787%

算术平均数

$$\bar{G} = (4.5\% + 2.1\% + 25.5\% + 1.9\%) \div 4 = 8.5\%$$

比较: 众数、中位数和平均数

众数

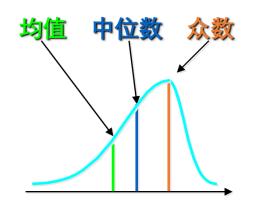
- 不受极端值影响
- 具有不惟一性
- 适合识别峰值

中位数

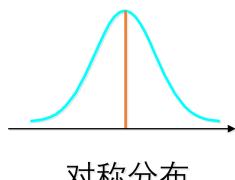
- 不受极端值影响
- 数据分布偏斜程度较大时应用

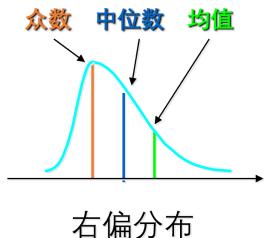
平均数

- 易受极端值影响
- 数据**对称分布**或接近对称 分布时应用



左偏分布





4.2 离散程度 的度量

异众比率

四分位差

方差和标准差

离散系数

标准分数与经验法则

异众比率

定义

异众比率(Variation ratio),是指非众数组的频数占总频数的比例。

表示: 1/2

公式

$$V_r = \frac{\sum f_i - f_m}{\sum f_i} = 1 - \frac{f_m}{\sum f_i}$$

应用: 无序分类数据的离散程度测度

说明:

- 衡量众数的代表性
 - 异众比率越小,众数代表性越强,离散程度越小
 - 异众比率越大, 众数代表性越弱, 离散程度越大

例子: 异众比率

不同品牌饮料的频数分布

饮料品牌	频数	比例	百分比 (%)				
果汁矿泉水	6 10	0.12	12 20				
绿茶 其他	11 8	0.22 0.16	22 16				
碳酸饮料	15	0.30	30				
合计	50	1	100				

$$V_r = \frac{50 - 15}{50}$$
$$= 70\%$$

在所调查的50人当中,购买 其他品牌饮料的人数占70%,异众 比率比较大。

因此,用"碳酸饮料"代表消费 者购买饮料品牌的状况,其代表 性不是很好

四分位差

定义

四分位差(Quartile deviation),也称四分位距、内距(Inter-quartile ranger),是一组数据75%位置上的四分位数与25%位置上的四分位数之差。

表示: IQR

公式

$$IQR = Q_U - Q_L$$

应用: 有序分类数据的离散程度测度

说明:

- 不受极端值的影响
- 反映中间50%数据的离散程度
- 数值越大, 离散程度越大

例子: 四分位差

某城市家庭对住房状况的评价

回答类别	户数 (户)	累计频数
非常不满意 不满意 一般 满意	24 108 93 45	24 132 225 270
非常满意合计	30 300	300

假设:

非常不满意=1,不满意=2, 一般=3, 满意=4, 非常满意=5

已知

四分位差为

$$IQR = Q_{U} - Q_{L}$$

= 3 - 2 = 1

极差

定义

极差(Range),也称全距,一组数据的最大值与最小值之差。

表示: R

公式

$$R = \max(x_i) - \min(x_i)$$

应用:数值型数据的离散程度测度

说明:

- 离散程度的最简单测度
- 容易受到极端值的影响

平均差

定义

平均差(Mean deviation),也称平均绝对离差,是指各变量值与其平均数离差绝对值的平均数。

表示: M_d

公式

• 未分组数据

$$M_{\rm d} = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n}$$

• 分组数据

$$M_{\rm d} = \frac{\sum_{i=1}^{k} |M_i - \bar{x}| f_i}{n}$$

应用. 数值型数据的离散程度测度

说明. 数学性质较差,实际中应用较少

方差和标准差

定义

- 方差(Variance): 离差平方的平均数。
- 标准差(Standard deviation): 方差开方后的结果。

表示

- 总体方差和标准差: σ^2 , σ
- 样本方差和标准差: s², s

应用: 数值型数据的离散程度测度

说明:

- 方差(标准差)是应用最广泛的离散程度测度统计量
- 标准差具有量纲(与原始数据相同)

方差和标准差: 公式

总体

• 未分组数据
• 方差
$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

• 标准差
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N}(x_i - \mu)^2}{N}}$$

• 分组数据
• 方差
$$\sigma^2 = \frac{\sum_{i=1}^K (M_i - \mu)^2 f_i}{N}$$

• 标准差
$$\sigma = \sqrt{\frac{\sum_{i=1}^{K} (M_i - \mu)^2 f_i}{N}}$$

样本

• 未分组数据
• 方差
$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

• 标准差
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

• 分组数据

分组数据
• 方差
$$s^2 = \frac{\sum_{i=1}^k (M_i - \bar{x})^2 f_i}{n-1}$$

• 标准差
$$s = \sqrt{\frac{\sum_{i=1}^{k} (M_i - \bar{x})^2 f_i}{n-1}}$$

问题: 为什么样本方差和标准差除以n-1,而不是n?

自由度

定义

自由度(Degree of freedom),是指数据个数与附加给独立的观测值的约束或限制的个数之差。

内涵: 一组数据中可以自由取值的个数

例子

某样本有3个数值: $x_1=2$, $x_2=4$, $x_3=9$ 。当 x=5 确定后, x_1 , x_2 和 x_3 有两个数据可以自由取值,另一个则不能自由取值,比如 $x_1=6$, $x_2=7$, 那么 x_3 则必然取2,而不能取其他值。

样本方差自由度的解释

- 样本均值的约束
- 无偏估计量

例子: 样本标准差

某电脑公司销售量数据平均差计算表

按销售量分组	组中值(<i>M_i</i>)	频数 (f_i)	$(M_i - \bar{x})^2$	$(M_i - \bar{x})^2 f_i$
140~150	145	4	40	160
150 ~ 160	155	9	30	270
160 ~ 170	165	16	20	320
160 ~ 170	100	10	20	320
170 ~180	175	27	10	270
180 ~ 190	185	20	0	0
190 ~ 200	195	17	10	170
200 ~ 210	205	10	20	200
210 ~220	215	8	30	240
220 ~230	225	4	40	160
230 ~240	235	5	50	250
合计		120		55400

$$s = \sqrt{\frac{\sum_{i=1}^{k} (M_i - \bar{x})^2 f_i}{n-1}}$$
$$= \sqrt{\frac{55400}{120-1}} = 21.58(\stackrel{\triangle}{\ominus})$$

含义: 每一天的销售量与平均数

相比, 平均相差21.58台。

离散系数

定义

离散系数(coefficient of variation),也称**变异系数**,它是一组数据的标准 差与其相应的均值之比。

表示: CV

公式

$$CV = \frac{s}{\bar{x}}$$

应用:数值型数据离散程度的相对测度

说明:

- 相对离散程度的测度
- 离散系数越大,相对离散程度越大;离散系数越小,相对离散程度与小
- 适合不同样本的离散程度比较

例子: 离散系数

某管理局所属8家企业的产品销售数据

企业编号	产品销售额 (万元) × ₁	销售利润 (万元) x ₂
1	170	8.1
2	220	12.5
3	390	18.0
4	430	22.0
5	480	26.5
6	650	40.0
7	950	64.0
8	1000	69.0

$$\bar{x}_1 = 536.25(万元)$$

$$s_1 = 309.19(万元)$$

$$CV_1 = \frac{309.19}{536.25} = 0.577$$

$$\bar{x}_2 = 32.5215(万元)$$

$$s_2 = 23.09(万元)$$

$$CV_2 = \frac{23.09}{32.5215} = 0.710$$

结论: 计算结果表明 $CV_1 < CV_2$,

说明产品销售额的离散程度小于

销售利润的离散程度。

标准分数

定义

标准分数(coefficient of variation), 是指某个数据与其平均数的离差 除以标准差后的值。

表示: Z_i

公式

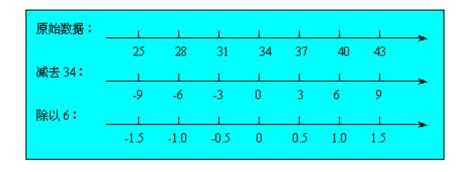
$$z_i = \frac{x_i - \bar{x}}{s}$$

应用

数值型数据的相对位置的测度

说明

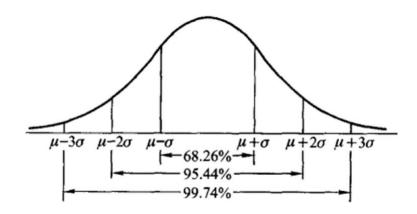
- 标准化会消除量纲,便于不同量纲的数据比较
- 标准化后的数据,容易判断**离群点** (outlier),也称异常值
- 标准化是**线性变换**,不改变分布的 形状



经验法则1:对称分布

对称分布

- 约有68.26%的数据在平均数加减1个标准差的范围之内;
- 约有95.44%的数据在平均数加减2个标准差的范围之内;
- 约有99.74%的数据在平均数加减3个标准差的范围之内;



定义

离群点(outlier),也称异常值,是指3个标准差之外的数据点。

经验法则2: 非对称分布

非对称分布

- 至少有75%的数据落在平均数加减2个标准差的范围之内;
- 至少有89%的数据落在平均数加减3个标准差的范围之内;
- 至少有94%的数据落在平均数加减4个标准差的范围之内。

依据

如果一组数据是**非对称分布**,那么根据**切比雪夫不等式**,至少有 $\left(1-\frac{1}{k^2}\right)$ 的数据落在平均数加减k个标准差的范围内。

4.3 分布形状 的度量

偏度

峰度

Jarque-Bera统计量

偏度

定义

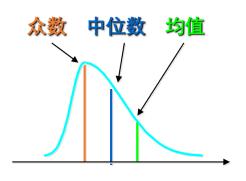
偏度(Skewness),是指数据分布的不对称性。

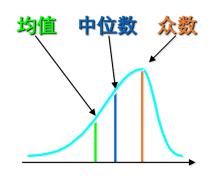
测度

偏度系数(Coefficient of Skewness)

公式

$$SK = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{\infty} \left(\frac{x_i - \bar{x}}{s}\right)^3$$





左偏分布

区间	含义	分布特点
S>1	高度偏态, 右偏	右偏
$0.5 < S \le 1$	中度偏态,右偏	(长的右拖尾)
$0 < S \le 0.5$	低度偏态, 右偏	(下的石地尾)
S=0	无偏态	对称分布
$0 > S \ge -0.5$	低度偏态, 左偏	七 / 户
$-0.5 > S \ge -1$	中度偏态,左偏	左偏 (长的大族屋)
S<-1	高度偏态,左偏	(长的左拖尾)

峰度

定义

峰度(Kurtosis),是指数据分布 峰值的高低。

测度

峰度系数(Coefficient of Kurtosis)

公式

$$K = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{\infty} \left(\frac{x_i - \bar{x}}{s}\right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)}$$

区间	分布特点	典型分布
K>0	尖峰分布 (数据分布更集中)	-
K=0	标准分布	标准正态分布
K<0	平峰分布 (数据分布更分散)	t 分布

Jarque-Bera统计量

公式

$$JB = rac{S^2}{6/n} + rac{(K-3)^2}{24/n}$$

其中n是观测数 (或自由度); S是样本偏度, K是样本峰度:

$$S = rac{\hat{\mu}_3}{\hat{\sigma}^3} = rac{rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^3}{ig(rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^2ig)^{3/2}},
onumber \ K = rac{\hat{\mu}_4}{\hat{\sigma}^4} = rac{rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^4}{ig(rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^2ig)^{4/2}},
onumber$$

应用

分布服从**正态分布的综合测度**

说明

• 正态分布: S=0, K=3

注意

这里的峰度公式与前面的公式写法 不同,这里的K=3相当于前面的K=0。

本章小结

